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The one-dimensional contact process with weak to intermediate quenched disorder in its transmission rates
is investigated via quasistationary Monte Carlo simulation. We address the contested questions of both the
nature of dynamical scaling, conventional or activated, as well as of universality of critical exponents by
employing a scaling analysis of the distribution of lifetimes and the quasistationary density of infection. We
find activated scaling to be the appropriate description for intermediate to strong disorder. Critical exponents
taken at face value are disorder dependent and approach the values expected for the limit of strong disorder as
predicted by strong-disorder renormalization-group analysis of the process. However, no definitive conclusion
about the nature of exponents is possible from this numerical approach on its own.
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The critical behavior of systems with quenched random-
ness has been the subject of interest for a long time. Over the
past decades, their investigation has revealed rich behavior
including the existence of new phases �1�, novel fixed points
�2�, and unconventional scaling properties �3�.

Recently, attention has turned toward the influence of dis-
order on stochastic many-particle systems with a phase tran-
sition into an absorbing state owing to their relevance in
physics, chemistry, and biology �4�. In particular, the contact
process �CP� �5�, a paradigmatic model for the stochastic
spreading of an infectious disease, has been investigated as a
representative for the prominent universality class of directed
percolation �DP�. Interest in the influence of disorder on this
process was sparked by the surprising lack of experimental
observation of DP behavior in real systems, for which disor-
der may be responsible �6�. With a recent study presenting
convincing evidence of DP critical behavior in turbulent liq-
uid crystals �7�, an understanding of the effects of disorder is
more relevant than ever.

Initial Monte Carlo �MC� studies of the disordered contact
process �DCP� found continuously varying dynamical criti-
cal exponents assuming conventional scaling �8–10�. Re-
cently, deep insight was gained through a strong-disorder
renormalization-group study of the DCP which revealed an
infinite-randomness fixed point �IRFP� for sufficiently strong
disorder in close analogy to the random transverse-field Ising
model �11�. While this makes the strong-disorder limit of the
process well understood �2� and predicts new strong-disorder
exponents as well as an unconventional “activated” form of
dynamical scaling, the behavior in the weak- and
intermediate-disorder regime remains a subject of debate
�12,13�. Initial density-matrix renormalization-group
�DMRG� studies were not able to convincingly distinguish
the two alternative dynamical scaling scenarios, conventional
or activated, and reported critical exponents continuously
changing with disorder strength �12�. In contrast, a recent
MC study reported evidence for activated scaling with

strong-disorder exponents for all disorder strengths �13�.
Very recently, a modification of the strong-disorder
renormalization-group approach attempted an analysis of the
weak disorder regime and suggested that the critical behavior
is controlled by an IRFP for any amount of disorder �14�.

Static scaling in the DCP was found to be of conventional
form �15� as predicted by the strong-disorder renormalization
study �11�. However, there exists conflicting evidence as to
the universality of the exponents for weak and intermediate
disorder with the literature reporting both disorder-dependent
�15,16� and strong-disorder �13� exponents.

In this Brief Report, we aim to address both the question
of the type of dynamical scaling as well as of universality of
exponents in the weak- and intermediate-disorder regime by
considering the scaling of the distribution of lifetimes, P���,
of the one-dimensional DCP obtained from quasistationary
MC simulation. This is motivated by the fact that an analysis
of the scaling behavior of entire distributions promises to
yield clearer results as compared to the scaling of means
�12,17�. Further, in dynamic single-seed MC simulations em-
ployed for the DCP in the past �9,13�, the question of
whether the long-time limit of the process had been reached
was frequently contested. In contrast, quasistationary simu-
lations offer a clear means of ensuring this: a true stationary
average whose convergence can be monitored.

In the clean CP �without disorder� defined on a lattice,
sites represent the individuals of a population which can be
in two possible states, susceptible or infected. An infected
site attempts to spread its infection to nearest neighbors at
rate �, while recovery is spontaneous at rate �=1. In the limit
t→� for an infinite system, there exist two distinct states: an
active one where a finite density � of infected sites remains
and a nonactive regime in which the system ultimately gets
trapped in an absorbing state with no infected sites remain-
ing. The system undergoes a continuous phase transition be-
tween these two phases at a critical rate �−�c

0��=0 with
order parameter � �4,18�.

Starting from a fully infected system, the density of in-
fected sites initially relaxes while spatial correlations grow
toward the size of the system and temporal correlations de-
cay. Once the correlation length becomes comparable to this*sf287@cam.ac.uk
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size, the process enters a quasistationary �QS� state charac-
terized by a nonzero time-independent transition rate to the
absorbing state. Given that no true nontrivial stationary state
can exist in a finite system, in these cases QS averages are
commonly used as a proxy in the CP and allied models.
Ultimately, the clean CP is bound to enter the absorbing
state, the approach of which is characterized by an exponen-
tially decaying probability of survival, Ps�t��exp�−t /��,
with a characteristic lifetime �. The QS density of infected
sites, �̄, obeys a scaling form characterized by the universal
scaling function F, i.e.,

�̄ � N−xF��N−1/��� , �1�

with x=� /��, where � is the order parameter exponent in
the infinite system. �15,18�.

Turning to the disordered process, we follow Ref. �13�
and incorporate quenched randomness into the transmission
rates of individual sites i, �i, which are drawn from the bi-
modal distribution

P��i� = �1 − p�	��i − �� + p	��i − c�� , �2�

where p controls the concentration of impurities while
0
c
1 characterizes the strength of the disorder. As a con-
sequence, there now exists a new dirty critical point at a rate
�c��c

0. Also, observables may in general take different val-
ues between different realizations leading to disorder-
induced distributions such as P��� for the lifetime.

Scaling predictions for P��� exist and differ for the two
alternative scaling scenarios, i.e., conventional and activated
scaling. In the former case, the relevant variable is � and its
average over disorder, ���, is expected to obey a conventional
homogeneous scaling form albeit with a possibly disorder-
dependent dynamical exponent z. Accordingly, the appropri-
ate scale-invariant combination of variables is �N−z and the
lifetime distribution at criticality is expected to scale as

P��� = N−zP̃��N−z� , �3�

where P̃ is a universal scaling function.
Systems that exhibit activated scaling are characterized by

a strong dynamical anisotropy: the typical length scale is
related to the logarithm of the typical time scale, thus ren-
dering the dynamical exponent formally infinity. This reflects
the notion that the very broad distributions for observables
are better described by their geometric rather than arithmetic
means �2�. For the lifetime, this leads to a scaling combina-
tion N−� ln��� and a corresponding scaling relation �11�,

P„ln���… � N−�P̃„N−� ln���… , �4�

where � is an activated scaling exponent �cf. Eq. �3��. For an
IRFP, which is known to control the critical behavior of the
DCP for sufficiently strong disorder, the exponent takes the
value �= 1

2 . This type of fixed point is characterized by an
extreme dynamical anisotropy, ultraslow dynamics, and dis-
tributions whose width diverges with system size �2,19�.

The QS density �̄ is expected to follow a conventional
scaling form analogous to Eq. �1� with an exponent x which
differs from the clean DP value and, for sufficiently strong
disorder, is predicted to be x= 3−	5

4 
0.19 �11�. In order to

check the above scaling relations for the DCP, the QS state
can be investigated numerically. Analysis of this metastable
state in computer simulations has proved to be notoriously
difficult in the past. Commonly, the time-dependent density
of infected sites conditioned on survival, which becomes sta-
tionary in the QS regime, is investigated �18�. Problemati-
cally though, it is neither clear a priori at what time an
observable like the average density of infected sites �̄ has
converged to its QS value nor when the QS state starts to
decay due to finite-size effects �20�. Therefore, a range of
alternative approaches have been proposed which enable an
observation of this metastable regime �see Ref. �21� and ref-
erences therein�. Here, we employ the QS simulation method
�21� which allows a direct sampling of the QS state by elimi-
nating the absorbing state and redistributing its probability
mass over the active states according to the history of the
process to obtain a process with a true stationary state. Gen-
erally, the method has proved to be efficient with fast and
reliable convergence after optimization of history sampling
parameters. As demonstrated in Ref. �22�, the lifetime of the
QS state can be determined as the inverse of the rate of
attempts by the system to enter the absorbing state.

In order to investigate the validity of the two different
scaling scenarios for the lifetime distribution at the dirty
critical point, simulation data for disorder strengths c=0.2,
0.4, 0.6, and 0.8 at a concentration p=0.3 were considered at
the critical rates reported in Ref. �13�. System sizes of
N=16, 32, 64, and 128 sites were investigated with data
sampled from no less than 104 disorder realizations per
system size and QS simulation times of up to 109 time
steps. Given that probability density functions �PDFs� are
difficult to obtain from simulation data �as binning proce-
dures have to be used which may introduce artifacts�, we
perform scaling on cumulative density functions �CDFs�,
F��t�=�0

t P�t��dt�. The scaling properties of these can be
readily derived by starting from the two scaling forms for
conventional and activated scaling, Eqs. �3� and �4�, respec-

tively. In the former case this gives F��t�= Q̃�tN−z� with Q̃�x�
a new scaling function while the latter case yields an analo-
gous expression.

As displayed in Fig. 1, the resulting CDFs were collapsed
onto each other according to the two possible scaling sce-
narios �main panels�. In order to achieve a fair comparison,
logarithmic variables were used for the conventional scaling
case �17�. As illustrated in Fig. 2, the exponents � and z
were determined from a power-law fit to the appropriate
scaling forms for the mean in the two scenarios, i.e.,
�ln�����N� and ����Nz. Insets show the alternative col-
lapse using PDFs as discussed above which requires the use
of histograms. There, the size of bins was chosen in order to
minimize noise and the smooth curve was obtained by
Gaussian broadening of individual data points.

For the case of strongest disorder �c=0.2, �c=5.24�, least-
squares fitting gave exponents �c=0.2=0.29�2� and
zc=0.2=3.44�3� for the two scaling scenarios, respectively.
Data collapses for the distributions are shown in Fig. 1�a� for
both activated �top panel� and conventional scaling �bottom
panel�. From these results, we judge that the activated scal-
ing scenario provides a better fit to the data. In particular,
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while the collapse is not perfect, it is not found to exhibit any
systematic trends which would hint at a fundamental incon-
sistency with the scaling form. This is also confirmed by the
inset which shows the corresponding collapse of the PDF.
Generally, while the fit is excellent for small to medium val-
ues of �, it gets worse with increasing �. We attribute this to
the fact that large values of � correspond to rare events caus-
ing the tail of the distribution to have been sampled at a
comparatively poorer density than the bulk which results in
stronger fluctuations. Considering the collapse using the con-
ventional scaling form �bottom panel of Fig. 1�a�� on the
other hand produces a clear trend of shifting of distributions
between different system sizes indicating a worse collapse as

compared to the previous case for both CDF and PDF.
Looking at an analogous analysis for the case of weakest

disorder �c=0.8, �c=3.525� in Fig. 1�b�, the two scaling sce-
narios become harder to differentiate. A collapse using the
measured exponents �c=0.8=0.22�2� and zc=0.8=1.65�3� ap-
pears to work similarly well in both cases but the quality of
collapse is too poor to allow any definitive judgment. A close
look reveals a systematic trend of shifting curves for the case
of conventional scaling �bottom panel in Fig. 1�b�� while
crossings appear to be less systematic in the activated scaling
picture �top panel in Fig. 1�b��. Therefore, slight preference
may be given to the activated scaling scenario.

In addition, the intermediate cases of both c=0.4 and c
=0.6 �not shown� were considered in an analogous fashion
and showed an excellent activated scaling collapse of similar
quality as for the case of c=0.2. Collapsing data for all dis-
order strengths considered on the same plot shows no uni-
versality of the scaling function between different disorder
strengths, i.e., it appears to be disorder dependent.

Finite-size scaling of the QS density �̄�N�, as shown in
Fig. 3, is found to be conventional with a disorder-dependent
exponent x=x�c�. The conventional scaling form is in line
with previous investigations �15� and theoretical predictions
�11�. Moreover, the fact that we again find continuously
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FIG. 1. �Color online� Scaling collapse for the distributions of
lifetimes � for system sizes N=16���, 32���, 64���, and 128���
for disorder strengths �a� c=0.2 and �b� c=0.8 according to both
activated �main panel� and conventional �inset� scaling predictions.
Scaling exponents were determined from the finite-size scaling of
the means �ln���� or ���, respectively, as described in the text.
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FIG. 2. �Color online� Example of the scaling of the average
�ln���� �left� and ��� �right� with system size for the case of stron-
gest disorder �c=0.2� used to extract the exponents � and z.
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FIG. 3. �Color online� The quasistationary density �̄ as a func-
tion of system size N at criticality for both the strongest �top, c
=0.2� and the weakest �bottom: c=0.8� disorder strength. Dashed
lines are linear least-squares fits which gave slopes of xc=0.2

=0.22�1� and xc=0.8=0.25�1� while the solid line is a guide for the
eyes with slope xstrong=0.19, the expected exponent in the strong-
disorder limit.
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varying exponents gives additional credibility to the scaling
picture presented above. Generally, both the exponent � and
the exponent x are found to approach their values predicted
from strong-disorder renormalization �11� with increasing
strength of disorder starting from their homogeneous values
as shown in Fig. 4. For the strongest disorder under consid-
eration �c=0.2�, both exponents are found to still be well
away from their predicted strong-disorder values.

The above findings suggest that for strong enough disor-
der, activated scaling captures the behavior of the disordered
CP well compared to a conventional scaling picture. For
weak disorder however, no such clear conclusion can be
made. Further, associated critical exponents appear to change
smoothly from their clean DP values approaching their val-
ues characteristic of an IRFP asymptotically with increasing
disorder strength. While this conclusion appears to be in con-
flict to that presented in Ref. �13�, the authors of that refer-
ence do discuss doubts about the universality of exponents

and cannot exclude the possibility of a change with disorder
strength. We have reanalyzed some of the data presented
there and found it to be compatible with our exponent values.

There exist three possible explanations compatible with
these findings. First, a continuous line of fixed points, one for
each strength of disorder, could be present which for suffi-
ciently strong disorder turns to an attractive flow into the
IRFP as suggested in Ref. �11�. Second, identical and nu-
merically indistinguishable behavior could be explained by a
crossover between the clean DP fixed point and the IRFP
where effective exponents are observed at intermediate dis-
order strengths due to the influence of both fixed points. This
has been observed in several disordered equilibrium systems
as discussed in, e.g., Refs. �23,24�. Lastly, in principle, the
observed behavior could also be explained by an abrupt jump
from the clean DP exponents to those of the IRFP obscured
by finite-size corrections.

The first option appears increasingly unlikely at least for
intermediate to strong disorder due to our finding of acti-
vated scaling. Also, the numerical evidence in favor of acti-
vated scaling in Ref. �13� and the results of the modified
renormalization-group procedure presented in Ref. �14�
weigh heavily against this hypothesis.

The last option we feel can be excluded in light of the
facts that perturbative series expansions �cf. Ref. �16�� do not
show a jump in exponents and that no evidence for strong
corrections to finite-size scaling were observed by us. This
makes the scenario of an IRFP obscured by crossover in the
weak disorder regime the most likely scenario. However,
without an established theoretical framework to analyze
crossover in the DCP, no definitive conclusion is possible.

We would like to thank Ronald Dickman for helpful re-
marks. Also, we thank Allon Klein, Chris Neugebauer, and
Francisco Pérez-Reche for stimulating discussions. The com-
putations were performed on the Cambridge High Perfor-
mance Computing Facility. S.V.F. would like to thank the
EPSRC-GB, the Cambridge European Trust, and the Studi-
enstiftung des Deutschen Volkes for financial support.

�1� R. B. Griffiths, Phys. Rev. Lett. 23, 17 �1969�.
�2� F. Igloi and C. Monthus, Phys. Rep. 412, 277 �2005�.
�3� D. S. Fisher, J. Appl. Phys. 61, 3672 �1987�.
�4� H. Hinrichsen, Adv. Phys. 49, 815 �2000�.
�5� T. E. Harris, Ann. Probab. 2, 969 �1974�.
�6� H. Hinrichsen, Braz. J. Phys. 30, 69 �2000�.
�7� K. A. Takeuchi, M. Kuroda, H. Chaté, and M. Sano, Phys. Rev.

Lett. 99, 234503 �2007�.
�8� A. J. Noest, Phys. Rev. Lett. 57, 90 �1986�.
�9� A. G. Moreira and R. Dickman, Phys. Rev. E 54, R3090

�1996�.
�10� R. Cafiero, A. Gabrielli, and M. A. Muñoz, Phys. Rev. E 57,

5060 �1998�.
�11� J. Hooyberghs, F. Iglói, and C. Vanderzande, Phys. Rev. Lett.

90, 100601 �2003�.
�12� J. Hooyberghs, F. Igloi, and C. Vanderzande, Phys. Rev. E 69,

066140 �2004�.
�13� T. Vojta and M. Dickison, Phys. Rev. E 72, 036126 �2005�.

�14� J. A. Hoyos, Phys. Rev. E 78, 032101 �2008�.
�15� R. Dickman and A. G. Moreira, Phys. Rev. E 57, 1263 �1998�.
�16� C. J. Neugebauer, S. V. Fallert, and S. N. Taraskin, Phys. Rev.

E 74, 040101�R� �2006�.
�17� A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 �1996�.
�18� J. Marro and R. Dickman, Nonequilibrium Phase Transitions

in Lattice Models �Cambridge University Press, Cambridge,
1999�.

�19� T. Vojta, J. Phys. A 39, R143 �2006�.
�20� S. Lübeck and P. C. Heger, Phys. Rev. E 68, 056102 �2003�.
�21� M. M. de Oliveira and R. Dickman, Phys. Rev. E 71, 016129

�2005�.
�22� M. M. de Oliveira and R. Dickman, Braz. J. Phys. 36, 3A

�2006�.
�23� E. Carlon, P. Lajko, and F. Igloi, Phys. Rev. Lett. 87, 277201

�2001�.
�24� M. E. Fisher, Rev. Mod. Phys. 46, 597 �1974�.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.2

0.3

0.4

0.5

Ψ

0.0 0.2 0.4 0.6 0.8 1.0
c

0.18

0.20

0.22

0.24

0.26

x

FIG. 4. �Color online� Critical exponents � �top panel� and x
�bottom panel� as a function of disorder strength c where dashed
lines show the values in the limit of strong disorder.
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